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Introduction

e This talks centers around a technique that we call
landscape modification.

® [ hope to convince you that this is a promising acceleration
technique: this has successfully been applied to spin
systems to yield rapidly mixing algorithms with a novel use
of the global minimum value to adjust the landscape for
acceleration, while the same algorithm on the original
landscape mixes torpidly.
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Introduction

® Let 7 be a discrete or continuous distribution.
Goal: Sample from 7 or estimate 7(f), where

=Y wto). o n=[1e@n

e Difficulty: At times it is impossible to apply classical
Monte Carlo methods, since 7 is often of the form

nw) =
where Z is a normalization constant that cannot be

computed.
¢ Idea of Markov chain Monte Carlo (MCMCO):
Construct a Markov chain that converges to m, which only
depends on the ratio
m(y)
m(x)
Thus there is no need to know Z.
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The Metropolis-Hastings algorithm

® Two ingredients:
(i). Target distribution: 7
(ii). Proposal chain with transition matrix

Q= (Q(l‘, y))m7y'



The Metropolis-Hastings algorithm

Algorithm 1: The Metropolis-Hastings algorithm

Input: Proposal chain @, target distribution m
1 Given X, generate Y, ~ Q(X,, )
2 Take

X Y., with probability a(X,,Ys),
"7 ) X, with probability 1 — a(Xy, Y;),

where

o(e,y) = mm{w 1}

m(2)Q(z,y)’

is known as the acceptance probability.
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The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, with proposal chain () and
target distribution m, is a Markov chain X = (X,,),>1 with
transition matrix

P(z,y) = { *® V@), for z # y,
"’ 1_2’!/; y;ézP(m,y), fOI‘LE:y'
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The Metropolis-Hastings (MH) algorithm

Given target distribution m and proposal chain @, the
Metropolis-Hastings chain is

® reversible, that is, for all xz,y,

m(z)P(z,y) = n(y)P(y,z).

® (Ergodic theorem of MH) If P is irreducible, then

lim = 37 £(X;) = (/).
i=1

n—00 1 4
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The Metropolis-Hastings algorithm

e Different choices of @) give rise to different MH algorithms

°* Symmetric MH: We take a symmetric proposal chain
with Q(z,vy) = Q(y,x), and so the acceptance probability is

ole,y) = min{%,l} - min{%,l}.

¢ Random walk MH: We take a random walk proposal
chain with Q(z,y) = Q(y — z). E.g., Q(x, ) is the
probability density function of N(z,c?).

¢ Independence sampler: Here we take Q(z,y) = q(y),
where ¢(y) is a probability distribution. In words, Q(z,y)
does not depend on .
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® Goal: Find the global minimizer(s) of a target function U.
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non-homogeneous Metropolis-Hastings Markov chain
that converges to 7, which is supported on the set of
global minima of U.



Simulated annealing

® Goal: Find the global minimizer(s) of a target function U.

¢ Idea of simulated annealing: Construct a
non-homogeneous Metropolis-Hastings Markov chain
that converges to 7, which is supported on the set of
global minima of U.

® Target distribution: Gibbs distribution 77(;) with
temperature T'(t) that depends on time ¢

oU@)/T(1)

T (t) (z) = )

Z1(t)

Zpgy = 3 e U@/TE),

Proposal chain ): symmetric



Simulated annealing

¢ The temperature cools down T'(t) — 0 as t — oo, and we
expect the Markov chain get “frozen” at the set of global
minima Up,in:
1

rate) = i o) = | Dol "
> 0, for ¢ Upin.

Upin == {z; U(z) < U(y) for all y}.

for x € Upin,



Simulated annealing

Algorithm 2: Simulated annealing

Input: Symmetric proposal chain @), target distribution
Tr(t), temperature schedule 7'(t)
1 Given X;, generate Y; ~ Q(Xq,-)
2 Take

Xl Y;, with probability oy (X3, Y:),
17 Xy, with probability 1 — as(Xy, Y2),

where

at(r,y) := min {%, 1} = min{ew’ 1}

is the acceptance probability.
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take too long for the Markov chain to converge
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e T(t) cannot converge to zero too fast: we can prove that
with positive probability the Markov chain may get stuck
at local minimum.



Optimal cooling schedule

® The temperature schedule T'(t) cannot be too slow: it may
take too long for the Markov chain to converge

e T(t) cannot converge to zero too fast: we can prove that
with positive probability the Markov chain may get stuck
at local minimum.

The Markov chain generated by simulated annealing converges
to oo if and only if for any € > 0,

c+e
T(t):m7

where c is known as the optimal hill-climbing constant that
depends on the target function U and proposal chain Q.
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Simulated annealing (SA)

® Let U : R? = R be a differentiable target function to
minimize.



MicHAEL CHOI

Simulated annealing (SA)

® Let U : R? = R be a differentiable target function to
minimize.
¢ Overdamped Langevin diffusion (2;)¢>0:

The SDE of overdamped Langevin is given by

dZt = —VU(Zt) dt ar V 2€tdBt, (1)

where (B¢)¢>0 is the standard d-dimensional Brownian motion
and (e¢)¢>0 is the temperature or cooling schedule.
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Simulated annealing (SA)

® Let U : R? = R be a differentiable target function to
minimize.
¢ Overdamped Langevin diffusion (2;)¢>0:

The SDE of overdamped Langevin is given by

dZt = —VU(Zt) dt ar V 2€tdBt, (1)

where (B¢)¢>0 is the standard d-dimensional Brownian motion
and (e¢)¢>0 is the temperature or cooling schedule.

¢ The instantaneous stationary distribution at time ¢ is the
Gibbs distribution
1
4 (0) ox THUO)
® The overdamped Langevin diffusion is widely used in
sampling, e.g. ULA or MALA (Roberts and Tweedie '96)
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of C! parametric curves that start at = and end at y.



Simulated annealing (SA)

e Convergence of SA depends on a constant E, that is called
the critical height or the hill-climbing constant.

E,:= sup inf {sgp{U(*y(t))} —-U(z)-U(y) + infU} ,

I,yERd 'Yerz,y

where for two points z,y € R%, we write Iz to be the set
of C! parametric curves that start at = and end at y.

¢ Intuitively speaking, F, is the largest hill one need to climb
starting from a local minimum to a fixed global minimum.



What is E.?

b




Convergence of SA

Under the logarithmic cooling schedule of the form

€ = large enought, (2)

Int’
where E > E., for any § > 0 we have

lim P(U(Z;) > infU +6) = 0.

t—o00
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Improved simulated annealing (ISA)

® Many techniques have been developed in the literature to
accelerate the convergence of Langevin diffusion, e.g.
preconditioning (Li et al. '16), use of Lévy noise (Simsekli
'17), generalized Langevin dynamics (Chak et al. '20),
anti-symmetric perturbation of drift (Hwang et al. ’93,
Duncan et al. ’17)...



Improved simulated annealing (ISA)

® Many techniques have been developed in the literature to
accelerate the convergence of Langevin diffusion, e.g.
preconditioning (Li et al. '16), use of Lévy noise (Simsekli
'17), generalized Langevin dynamics (Chak et al. '20),
anti-symmetric perturbation of drift (Hwang et al. ’93,
Duncan et al. ’17)...

® In our talk today we will focus on a variant of overdamped

Langevin diffusion with state-dependent diffusion
coefficient, introduced by Fang et al. (SPA ’97)



Improved simulated annealing (ISA)

¢ Improved overdamped Langevin diffusion (Z;)>0:

The SDE of improved overdamped Langevin is given by

dZy = —VU(Zy) dt + V2 (f(U(Z) - ¢)+) + &) dBr.  (3)
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® c: It is chosen such that ¢ > inf U
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¢ Improved overdamped Langevin diffusion (Z;)>0:

The SDE of improved overdamped Langevin is given by
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Improved simulated annealing (ISA)

¢ Improved overdamped Langevin diffusion (Z;)>0:

The SDE of improved overdamped Langevin is given by

dZy = —VU(Zy) dt + V2 (f(U(Z) - ¢)+) + &) dBr.  (3)

® Two parameters are introduced:
® c: It is chosen such that ¢ > inf U
® f:R — R* twice-differentiable, non-negative, bounded and
non-decreasing with f(0) = f/(0) = f”(0) = 0.
¢ The instantaneous stationary distribution at time ¢ is

f Tr) X 1 €exX — U(x) 1 u
Fa®) X F @ - o r e O ( Lo Fa=arra )
o If f =0, then \/2(f((U(Z:) — ¢)+) + &) = \/2€;, which

reduces to the classical overdamped Langevin.




Idea of ISA

(%)

N
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noise
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SA
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Convergence of ISA

® The idea of using state-dependent noise makes sense
intuitively. However, is there convergence guarantee that
this improved Langevin dynamics ISA converges faster?



Convergence of ISA

® The idea of using state-dependent noise makes sense
intuitively. However, is there convergence guarantee that
this improved Langevin dynamics ISA converges faster?

® Yes.
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Convergence of ISA

Under the logarithmic cooling schedule of the form

€ = large enough t,

Int’

where E > ¢y, for any § > 0 we have

lim P(U(Z;) > infU +4§) = 0.

t—00
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Convergence of ISA

Under the logarithmic cooling schedule of the form

€ = large enough t,

Int’

where E > ¢y, for any § > 0 we have

lim P(U(Z;) > infU +4§) = 0.

t—00

¢ Key ingredient in the proof: both the relaxation time (i.e.
inverse of the spectral gap) and the log-Sobolev constant

are of the order O (exp {C—* }) .
€t
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cy: the clipped critical height

Recall the critical height E, in SA:

E,= sup inf {sup{U(v(t))} —U(z) - Uly) + infU}
z,ycRd RASLERY 3

The clipped critical height c, is defined to be

¢x:= sup inf {sup{U(’y(t))/\c} —U(x)Ac — U(y)Ac + inf U} .
z,ycREVEzy | ¢
® One way to understand c,: pretend that we are minimizing
U A c instead
We can show that the following two statements hold:
® < E
® ¢, <c—infU
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from U to eH,
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We can understand as if the optimization landscape is
modified from (1/¢,)U(z) to H,(x).



Change the target function from U to eH,

® Recall uéct :

f 1 X — e !
e, () f((U(x) —c)1) + € P ( /infU f(u=c)y) + e du)
¢ Let’s define H,,:

@)= [ e i (V@) - ) + o).
so that
u{t (z) x e Hel®),
e [n SA,

#gt (z) e~ (1/e)U(x)
We can understand as if the optimization landscape is
modified from (1/¢,)U(z) to H,(x).
® The idea of state-dependent noise is embedded in the
modified optimization landscape.



Idea of IKSA: landscape modification

e Consider the function

Uo(x) = cos(2z) + lsin(at) + %sin(lO:c).

2
We take e = 0.25, ¢ = —1.5 and f = arctan.
£=0.25
o]
£ o
2
z
Ed
s
3 ol
2 ¢
— BUK)
2 H Lo (0 +BU min




- MommCio
Landscape modification in the wild

S

BEFORE:

Image source: https://kdlandscapingandsnowplowingbuffalo.
com/renovation-landscape-modification/


https://kdlandscapingandsnowplowingbuffalo.com/renovation-landscape-modification/
https://kdlandscapingandsnowplowingbuffalo.com/renovation-landscape-modification/
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Improved kinetic simulated annealing (IKSA)

The SDE of improved kinetic Langevin is given by

dX; = Y; dt,
1

dY; = ——Yidt — ¢ VH, (X,)dt +V2dB,.
t

® The instantaneous stationary distribution at time ¢ is the
product distribution of Mé and a Gaussian distribution
with mean 0 and variance ¢;:

2 2

_lyll _ il
Wé(x,y) OCMQ(SC)e 2e o e Ha@e™ e
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Improved kinetic simulated annealing (IKSA)

The SDE of improved kinetic Langevin is given by

dX; = Y; dt,
1

dY; = ——Yidt — ¢ VH, (X,)dt +V2dB,.
t

® The instantaneous stationary distribution at time ¢ is the
product distribution of Mé and a Gaussian distribution
with mean 0 and variance ¢;:

2 llwli?

lyl (@)

7rgt (z,y) x ugt (x)e 2% xe

67 2et .

o If f =0, then VU(X;) = ¢ VH,(X,), which reduces to the
classical kinetic Langevin.
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Spin systems

® We would like to apply landscape modification to the
Metropolis-Hastings algorithm in the context of spin
systems.



Spin systems

® We would like to apply landscape modification to the
Metropolis-Hastings algorithm in the context of spin
systems.

¢ In many examples of spin systems of interest, the global
minimum value min U is known explicitly. This piece of
information can be utilized in the tuning of ¢ in landscape
modification, leading to accelerated samplers or optimizers.



MH chain on the original landscape

e State space: Yy := {—1,+1}V, N € N.
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MH chain on the original landscape

e State space: Yy := {—1,+1}V, N € N.

® Goal: sample from Fg x exp{—pU} in the
low-temperature regime (i.e. the inverse temperature f3 is
large), where U is the target Hamiltonian function specified

by the spin system of interest.
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e State space: Yy := {—1,+1}V, N € N.

e Goal: sample from 71'2 x exp{—pU} in the
low-temperature regime (i.e. the inverse temperature f3 is
large), where U is the target Hamiltonian function specified
by the spin system of interest.

¢ Algorithm: MH algorithm with target distribution ﬂ'g and
base chain being the simple random walk proposal on X

with transition matrix PSEW = (PSEW (5, o)), ,ex, given
by
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MH chain on the original landscape

e State space: Yy := {—1,+1}V, N € N.

e Goal: sample from 71'2 x exp{—pU} in the
low-temperature regime (i.e. the inverse temperature f3 is
large), where U is the target Hamiltonian function specified
by the spin system of interest.

¢ Algorithm: MH algorithm with target distribution ﬂ'g and
base chain being the simple random walk proposal on X

with transition matrix PSEW = (PSEW (5, o)), ,ex, given
by

1
PSRW(nv U) = Nl{there exists 4 such that n(i)=—o(%) and n(j)=0c(j) for all j#i}-

e This is the baseline algorithm that we will be comparing
with.
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® Consider the following modified Hamiltonian:

U(o) 1
! _
Z/{oz,c,l/ﬁ(o-) - /minU af((u — C)+) + 1/5 du.




MH chain on the modified landscape

® Consider the following modified Hamiltonian:

U(o) 1
! _
Z/loz,c,l/,B(o-) - /minU af((u — C)+) + 1/5 du.

® For this talk we are interested in taking f(z) = 22 and
« = [, which gives

ul

5,c,1/5(0) = [B(U(0) ANec—minU) 4 arctan(S(U(0) — ¢)+).



MH chain on the modified landscape

® Consider the following modified Hamiltonian:

U(o) 1
! _
Z/loz,c,l/,B(U) - /minU af((u — C)+) + 1/5 du.

® For this talk we are interested in taking f(z) = 22 and
« = [, which gives

ul

5,e,1/5(0) = [B(U(0) ANec—minU) 4 arctan(S(U(0) — ¢)+).

® The modified landscape exhibits a balance between
exploration and exploitation: the landscape is flattened
above ¢ to encourage exploration, while the original
landscape is utilized below ¢ to encourage exploitation.



MH chain on the modified landscape

e Algorithm: MH algorithm with target distribution
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71'6’0(0') o & U180,

and base chain being the simple random walk proposal on
Yy with transition matrix PSEW .



MH chain on the modified landscape

e Algorithm: MH algorithm with target distribution

ot
WB’C(O') o & U180,

and base chain being the simple random walk proposal on
Yy with transition matrix PSEW .

® Intuition: in the low-temperature regime, the bias
between the original target 77% and 7757 . 1s small. The MH
chain on the modified landscape mixes “fast”, while the
MH chain on the original landscape mixes “slowly” due to
the landscape.
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Mixing time parameters

To quantify the time it takes for the chain to mix, we introduce
the following parameters:

¢ (Total variation mixing time to Fg by Xic 18 (resp. Xg)
on the modified (resp. original) landscape)
+

o— . f t(~ \_ .0
mzz(g) := inf {t Z 07 Useusz H(‘Pa,c,l/ﬁ) (O-’ ) FBHTV S 6}-

5nia(€) = inf {t >0; sup [[(P9)(o,) = 7h]l 1y < }
gEXN



Mixing time parameters

To quantify the time it takes for the chain to mix, we introduce
the following parameters:

¢ (Total variation mixing time to 7Tg by Xic 18 (resp. Xg)
on the modified (resp. original) landscape)

thi0(e) i= int {’f 20 s ||[(PLy0)' 00 =5, < }
o N

i () :=inf{tzo; sup ||(P§)"(o,) — 73|, Se}.
gEXN

¢ (First time reaching min U with high probability)

oeEX N

T/ (e) := inf {t >0; inf Po(U(X] (1) =minl) >1- 5},

T(e) := inf {t > 0; O_iGnEfN Py (U(X§(t)) = minU) >1 - g}.
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Main results: from torpid to rapid mixing

For low enough temperature, the following holds:

e (Torpid total variation mizing time with exponential
dependence on N wusing Xg )

O (=0 (g I (%)) .

® (Rapid total variation mixing time with polynomial
dependence on N and B using ch 1/ﬁ)

(=0 <N3 (m (g) +Ble—minl) + 7+ N1n2>) .
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Main results: from torpid to rapid mixing

For low enough temperature, the following holds:

o (Xg takes at least exponential in N time to reach minU)

2N

T0() = 0 (_) |

€

° (X g c1/8 reaches min U in polynomial in N time with high
probability)

THe) =0 (N3 (ln (g) + Ble—minU) + 2 +N1n2)> .
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Application: Ising model on the complete graph

® Let Gy = (Vy, En) be a graph with Viy = [N]. For
o € Y, we consider the Ising model on the graph Gy
where the Hamiltonian function is given by

J h
U(U) = _E Z OvOw — 5 Z Ov,
(v,w)EEN vE[N]

where J > 0 is the pairwise interaction constant and h > 0
is the external magnetic field. In particular, in this
subsection we focus on the complete graph Gy = Kn.



Application: Ising model on the complete graph

® Let Gy = (Vy, En) be a graph with Viy = [N]. For
o € Y, we consider the Ising model on the graph Gy
where the Hamiltonian function is given by

U(U) = _% Z OvOw — g Z Ov,

(v,w)EEN vE[N]

where J > 0 is the pairwise interaction constant and h > 0
is the external magnetic field. In particular, in this
subsection we focus on the complete graph Gy = Kn.

e For this model, minU = U(+1).



Application: Ising model on the complete graph

Suppose we set ¢ = U(+1) + 0, where § is chosen small enough

mix

0. (™M) =0 (eDN3/6N> ,
while
tfm-w(e_N) =0 <N3 <ln (2eN) + 86+ g + N1n2>> ,

where D = D(J, h) > 0 is a universal constant that depends
on J, h.

/(™) =0 (N? (In (2¢N) + 85 + 7 + NIn2)).
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Application: Derrida’s random energy model (REM)

® Let (X,)oex, be a family of i.i.d. standard normal random
variables. At a spin configuration o € ¥y, the value of the
random Hamiltonian function at o is
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Application: Derrida’s random energy model (REM)

® Let (X,)oex, be a family of i.i.d. standard normal random
variables. At a spin configuration o € ¥y, the value of the
random Hamiltonian function at o is

® [t is known that the maximum of X, over o € X, when
normalized by v/ N, converges in probability to v/21n 2,
that is, for any ¢ > 0 we have
> e) =0.

N—o00 N o€xn

1
lim IP’( —— max X, — V2In2




Application: Derrida’s random energy model (REM)

1/4
J

Suppose we set c = —Nv/2In2 + N4
0=—-Nv2In2+ %/4 —minU. Note that w.h.p.

§ = Q(NY* —1n N). For large enough N and low enough
temperature, w.h.p. the following holds:

) =0 (eﬂ(N\/Zan—C'l\/NlnN)—(1n4)NN> :

thise™) = O (N? (In 2¥) + g5 + 7 + Nn2)).

THe ™M) =0 (N3 (ln (2¢™) —i—ﬂé—i—%—i—Nan)).
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Concluding remarks

e This talks centers around a technique that we call
landscape modification.

e This has successfully been applied to spin systems to yield
rapidly mixing algorithms with a novel use of the global
minimum value to adjust the landscape for acceleration,
while the same algorithm on the original landscape mixes
torpidly.

® The transformation is not only limited to this setup. In
fact it is broadly applicable to any gradient-based or

difference-based optimization or sampling algorithm.
® There are also quite a few techniques that share the spirit
of landscape modification that we are aware:
® QOlivier Catoni’s energy transformation algorithm, which
can be further traced back to the work of Robert Azencott
® Preconditioning
® Importance sampling
® Quantum annealing



Catoni’s energy transformation algorithm

Probab. Theory Relat. Fields 110, 69-89 (1998) oo
Probability
Theory i

© Springer-Verlag 1998

The energy transformation method for the Metropolis
algorithm compared with Simulated Annealing

Olivier Catoni

DIAM - Intelligence Artificielle et Mathématiques, Laboratoire de Mathématiques de I’Ecole
Normale Supérieure, UA 762 du CNRS, 45, rue d’Ulm, F-75 005 Paris, France



Quantum annealing, MCMC and D-Wave

Image source: Wang et al. Statistical Science '16

Quanturl;l. Annealing with Markov Chain
Monte Carlo Simulations and D-Wave
Quantum Computers

‘Yazhen Wang, Shang Wu and Jian Zou
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Classical physics
Climbing the hill

Quantum physics
Tunneling

B H
L LI
-
FIG. 1. Acartoon illustration of quantun tunneling vs. thermal clinbing on the top panel with annealing elucidations of quantum tunneling

on the left boitom panel and thermal climbing on the right bottom panel.



Ongoing work

¢ Landscape modification applied to Sequential Monte Carlo
(SMC) (with Kengo Kamatani at ISM Tokyo)

¢ Finding maximum independent set in graphs
® Other NP-hard problems?



Thank you! Question(s)?
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