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Introduction

• This talks centers around a technique that we call
landscape modification.

• I hope to convince you that this is a promising acceleration
technique: this has successfully been applied to spin
systems to yield rapidly mixing algorithms with a novel use
of the global minimum value to adjust the landscape for
acceleration, while the same algorithm on the original
landscape mixes torpidly.
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Introduction

• Let π be a discrete or continuous distribution.
Goal: Sample from π or estimate π(f), where

π(f) =
∑
x

f(x)π(x), or π(f) =

∫
f(x)π(dx).

• Difficulty: At times it is impossible to apply classical
Monte Carlo methods, since π is often of the form

π(x) =
e−βH(x)

Z
,

where Z is a normalization constant that cannot be
computed.

• Idea of Markov chain Monte Carlo (MCMC):
Construct a Markov chain that converges to π, which only
depends on the ratio

π(y)

π(x)
.

Thus there is no need to know Z.
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The Metropolis-Hastings algorithm

• Two ingredients:
(i). Target distribution: π
(ii). Proposal chain with transition matrix
Q = (Q(x, y))x,y.
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The Metropolis-Hastings algorithm

Algorithm 1: The Metropolis-Hastings algorithm

Input: Proposal chain Q, target distribution π
1 Given Xn, generate Yn ∼ Q(Xn, ·)
2 Take

Xn+1 =

{
Yn, with probability α(Xn, Yn),

Xn, with probability 1− α(Xn, Yn),

where

α(x, y) := min

{
π(y)Q(y, x)

π(x)Q(x, y)
, 1

}
is known as the acceptance probability.
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The Metropolis-Hastings algorithm

Definition

The Metropolis-Hastings algorithm, with proposal chain Q and
target distribution π, is a Markov chain X = (Xn)n≥1 with
transition matrix

P (x, y) =

{
α(x, y)Q(x, y), for x ̸= y,

1−
∑

y; y ̸=x P (x, y), for x = y.
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The Metropolis-Hastings (MH) algorithm

Theorem

Given target distribution π and proposal chain Q, the
Metropolis-Hastings chain is

• reversible, that is, for all x, y,

π(x)P (x, y) = π(y)P (y, x).

• (Ergodic theorem of MH) If P is irreducible, then

lim
n→∞

1

n

n∑
i=1

f(Xi) = π(f).
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The Metropolis-Hastings algorithm

• Different choices of Q give rise to different MH algorithms

• Symmetric MH: We take a symmetric proposal chain
with Q(x, y) = Q(y, x), and so the acceptance probability is

α(x, y) = min

{
π(y)Q(y, x)

π(x)Q(x, y)
, 1

}
= min

{
π(y)

π(x)
, 1

}
.

• Random walk MH: We take a random walk proposal
chain with Q(x, y) = Q(y − x). E.g., Q(x, ·) is the
probability density function of N(x, σ2).

• Independence sampler: Here we take Q(x, y) = q(y),
where q(y) is a probability distribution. In words, Q(x, y)
does not depend on x.
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Simulated annealing

• Goal: Find the global minimizer(s) of a target function U .

• Idea of simulated annealing: Construct a
non-homogeneous Metropolis-Hastings Markov chain
that converges to π∞, which is supported on the set of
global minima of U .

• Target distribution: Gibbs distribution πT (t) with
temperature T (t) that depends on time t

πT (t)(x) =
e−U(x)/T (t)

ZT (t)
,

ZT (t) =
∑
x

e−U(x)/T (t).

Proposal chain Q: symmetric
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Simulated annealing

• The temperature cools down T (t) → 0 as t → ∞, and we
expect the Markov chain get “frozen” at the set of global
minima Umin:

π∞(x) := lim
t→∞

πT (t)(x) =


1

|Umin|
, for x ∈ Umin,

0, for x /∈ Umin.

Umin := {x; U(x) ≤ U(y) for all y}.
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Simulated annealing

Algorithm 2: Simulated annealing

Input: Symmetric proposal chain Q, target distribution
πT (t), temperature schedule T (t)

1 Given Xt, generate Yt ∼ Q(Xt, ·)
2 Take

Xt+1 =

{
Yt, with probability αt(Xt, Yt),

Xt, with probability 1− αt(Xt, Yt),

where

αt(x, y) := min

{
πT (t)(y)Q(y, x)

πT (t)(x)Q(x, y)
, 1

}
= min

{
e

U(x)−U(y)
T (t) , 1

}
is the acceptance probability.
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Optimal cooling schedule

• The temperature schedule T (t) cannot be too slow: it may
take too long for the Markov chain to converge

• T (t) cannot converge to zero too fast: we can prove that
with positive probability the Markov chain may get stuck
at local minimum.

Theorem (Hajek ’88, Holley and Stroock ’88)

The Markov chain generated by simulated annealing converges
to π∞ if and only if for any ϵ > 0,

T (t) =
c+ ϵ

ln(t+ 1)
,

where c is known as the optimal hill-climbing constant that
depends on the target function U and proposal chain Q.
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Simulated annealing (SA)

• Let U : Rd → R be a differentiable target function to
minimize.

• Overdamped Langevin diffusion (Zt)t≥0:

Definition (Overdamped Langevin)

The SDE of overdamped Langevin is given by

dZt = −∇U(Zt) dt+
√
2ϵtdBt, (1)

where (Bt)t≥0 is the standard d-dimensional Brownian motion
and (ϵt)t≥0 is the temperature or cooling schedule.

• The instantaneous stationary distribution at time t is the
Gibbs distribution

µ0
ϵt(x) ∝ e

− 1
ϵt
U(x)

.

• The overdamped Langevin diffusion is widely used in
sampling, e.g. ULA or MALA (Roberts and Tweedie ’96)
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Simulated annealing (SA)

• Convergence of SA depends on a constant E∗ that is called
the critical height or the hill-climbing constant.

•

E∗ := sup
x,y∈Rd

inf
γ∈Γx,y

{
sup
t
{U(γ(t))} − U(x)− U(y) + inf U

}
,

where for two points x, y ∈ Rd, we write Γx,y to be the set
of C1 parametric curves that start at x and end at y.

• Intuitively speaking, E∗ is the largest hill one need to climb
starting from a local minimum to a fixed global minimum.
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What is E∗?
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Convergence of SA

Theorem (Convergence of SA (Chiang et al. ’87, Holley et
al. ’89, Jacquot ’92, Miclo ’92 ...))

Under the logarithmic cooling schedule of the form

ϵt =
E

ln t
, large enough t, (2)

where E > E∗, for any δ > 0 we have

lim
t→∞

P (U(Zt) > inf U + δ) = 0.
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Improved simulated annealing (ISA)

• Many techniques have been developed in the literature to
accelerate the convergence of Langevin diffusion, e.g.
preconditioning (Li et al. ’16), use of Lévy noise (Simsekli
’17), generalized Langevin dynamics (Chak et al. ’20),
anti-symmetric perturbation of drift (Hwang et al. ’93,
Duncan et al. ’17)...

• In our talk today we will focus on a variant of overdamped
Langevin diffusion with state-dependent diffusion
coefficient, introduced by Fang et al. (SPA ’97)
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Improved simulated annealing (ISA)

• Improved overdamped Langevin diffusion (Zt)t≥0:

Definition (Improved overdamped Langevin)

The SDE of improved overdamped Langevin is given by

dZt = −∇U(Zt) dt+
√
2 (f((U(Zt)− c)+) + ϵt) dBt. (3)

• Two parameters are introduced:
• c: It is chosen such that c > inf U
• f : R → R+ twice-differentiable, non-negative, bounded and

non-decreasing with f(0) = f ′(0) = f ′′(0) = 0.
• The instantaneous stationary distribution at time t is

µf
ϵt(x) ∝

1

f((U(x)− c)+) + ϵt
exp

(
−
∫ U(x)

inf U

1

f((u− c)+) + ϵt
du

)
.

• If f = 0, then
√
2 (f((U(Zt)− c)+) + ϵt) =

√
2ϵt, which

reduces to the classical overdamped Langevin.
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Idea of ISA
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Convergence of ISA

• The idea of using state-dependent noise makes sense
intuitively. However, is there convergence guarantee that
this improved Langevin dynamics ISA converges faster?

• Yes.
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Convergence of ISA

Theorem (Convergence of ISA (Fang et al. ’97))

Under the logarithmic cooling schedule of the form

ϵt =
E

ln t
, large enough t,

where E > c∗, for any δ > 0 we have

lim
t→∞

P (U(Zt) > inf U + δ) = 0.

• Key ingredient in the proof: both the relaxation time (i.e.
inverse of the spectral gap) and the log-Sobolev constant

are of the order O
(
exp

{
c∗
ϵt

})
.
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c∗: the clipped critical height

• Recall the critical height E∗ in SA:

E∗ = sup
x,y∈Rd

inf
γ∈Γx,y

{
sup
t
{U(γ(t))} − U(x)− U(y) + inf U

}

• The clipped critical height c∗ is defined to be

c∗ := sup
x,y∈Rd

inf
γ∈Γx,y

{
sup
t
{U(γ(t))∧c} − U(x)∧c− U(y)∧c+ inf U

}
.

• One way to understand c∗: pretend that we are minimizing
U ∧ c instead

• We can show that the following two statements hold:

• c∗ ≤ E∗
• c∗ ≤ c− inf U
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• We can show that the following two statements hold:

• c∗ ≤ E∗
• c∗ ≤ c− inf U
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Change the target function from U to ϵHϵ

• Recall µf
ϵt :

µf
ϵt(x) ∝

1

f((U(x)− c)+) + ϵt
exp

(
−
∫ U(x)

inf U

1

f((u− c)+) + ϵt
du

)
.

• Let’s define Hϵt :

Hϵ(x) :=

∫ U(x)

inf U

1

f((u− c)+) + ϵ
du+ ln (f((U(x)− c)+) + ϵ) .

so that
µf
ϵt(x) ∝ e−Hϵt (x).

• In SA,
µ0
ϵt(x) ∝ e−(1/ϵt)U(x).

We can understand as if the optimization landscape is
modified from (1/ϵt)U(x) to Hϵt(x).

• The idea of state-dependent noise is embedded in the
modified optimization landscape.
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Idea of IKSA: landscape modification

• Consider the function

U0(x) = cos(2x) +
1

2
sin(x) +

1

3
sin(10x).

We take ϵ = 0.25, c = −1.5 and f = arctan.
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Landscape modification in the wild

Image source: https://kdlandscapingandsnowplowingbuffalo.

com/renovation-landscape-modification/

https://kdlandscapingandsnowplowingbuffalo.com/renovation-landscape-modification/
https://kdlandscapingandsnowplowingbuffalo.com/renovation-landscape-modification/
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Improved kinetic simulated annealing (IKSA)

Definition (Improved kinetic Langevin)

The SDE of improved kinetic Langevin is given by

dXt = Yt dt,

dYt = − 1

ϵt
Yt dt− ϵt∇Hϵt(Xt) dt+

√
2 dBt.

• The instantaneous stationary distribution at time t is the
product distribution of µf

ϵt and a Gaussian distribution
with mean 0 and variance ϵt:

πf
ϵt(x, y) ∝ µf

ϵt(x)e
− ∥y∥2

2ϵt ∝ e−Hϵt (x)e
− ∥y∥2

2ϵt .

• If f = 0, then ∇U(Xt) = ϵt∇Hϵt(Xt), which reduces to the
classical kinetic Langevin.
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Spin systems

• We would like to apply landscape modification to the
Metropolis-Hastings algorithm in the context of spin
systems.

• In many examples of spin systems of interest, the global
minimum value minU is known explicitly. This piece of
information can be utilized in the tuning of c in landscape
modification, leading to accelerated samplers or optimizers.
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MH chain on the original landscape

• State space: ΣN := {−1,+1}N , N ∈ N.

• Goal: sample from π0
β ∝ exp{−βU} in the

low-temperature regime (i.e. the inverse temperature β is
large), where U is the target Hamiltonian function specified
by the spin system of interest.

• Algorithm: MH algorithm with target distribution π0
β and

base chain being the simple random walk proposal on ΣN

with transition matrix PSRW = (PSRW (η, σ))η,σ∈ΣN
given

by

PSRW (η, σ) :=
1

N
1{there exists i such that η(i)=−σ(i) and η(j)=σ(j) for all j ̸=i}.

• This is the baseline algorithm that we will be comparing
with.
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MH chain on the modified landscape

• Consider the following modified Hamiltonian:

Uf
α,c,1/β(σ) =

∫ U(σ)

minU

1

αf((u− c)+) + 1/β
du.

• For this talk we are interested in taking f(x) = x2 and
α = β, which gives

Uf
β,c,1/β(σ) = β(U(σ) ∧ c−minU) + arctan(β(U(σ)− c)+).

• The modified landscape exhibits a balance between
exploration and exploitation: the landscape is flattened
above c to encourage exploration, while the original
landscape is utilized below c to encourage exploitation.
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MH chain on the modified landscape

• Algorithm: MH algorithm with target distribution

πf
β,c(σ) ∝ e

−Uf
β,c,1/β

(σ)
.

and base chain being the simple random walk proposal on
ΣN with transition matrix PSRW .

• Intuition: in the low-temperature regime, the bias
between the original target π0

β and πf
β,c is small. The MH

chain on the modified landscape mixes “fast”, while the
MH chain on the original landscape mixes “slowly” due to
the landscape.
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Mixing time parameters

To quantify the time it takes for the chain to mix, we introduce
the following parameters:

• (Total variation mixing time to π0
β by Xf

α,c,1/β (resp. X0
β)

on the modified (resp. original) landscape)

tfmix(ε) := inf

{
t ≥ 0; sup

σ∈ΣN

∥∥∥(P f
α,c,1/β)

t(σ, ·)− π0
β

∥∥∥
TV

≤ ε

}
.

t0mix(ε) := inf

{
t ≥ 0; sup

σ∈ΣN

∥∥(P 0
β )

t(σ, ·)− π0
β

∥∥
TV

≤ ε

}
.

• (First time reaching minU with high probability)

T f (ε) := inf

{
t ≥ 0; inf

σ∈ΣN

Pσ(U(Xf
α,c,1/β(t)) = minU) ≥ 1− ε

}
,

T 0(ε) := inf

{
t ≥ 0; inf

σ∈ΣN

Pσ(U(X0
β(t)) = minU) ≥ 1− ε

}
.
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Main results: from torpid to rapid mixing

Theorem

For low enough temperature, the following holds:

• (Torpid total variation mixing time with exponential
dependence on N using X0

β)

t0mix(ε) = Ω

(
4N

ε
ln

(
1

2ε

))
.

• (Rapid total variation mixing time with polynomial

dependence on N and β using Xf
β,c,1/β)

tfmix(ε) = O
(
N3

(
ln

(
2

ε

)
+ β(c−minU) +

π

2
+N ln 2

))
.
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ε
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Application: Ising model on the complete graph

• Let GN = (VN , EN ) be a graph with VN = JNK. For
σ ∈ ΣN , we consider the Ising model on the graph GN

where the Hamiltonian function is given by

U(σ) = −J

2

∑
(v,w)∈EN

σvσw − h

2

∑
v∈JNK

σv,

where J > 0 is the pairwise interaction constant and h > 0
is the external magnetic field. In particular, in this
subsection we focus on the complete graph GN = KN .

• For this model, minU = U(+1).
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Application: Ising model on the complete graph

Corollary

Suppose we set c = U(+1) + δ, where δ is chosen small enough

•
t0mix(e

−N ) = Ω
(
eDN3/δN

)
,

while

tfmix(e
−N ) = O

(
N3
(
ln
(
2eN

)
+ βδ +

π

2
+N ln 2

))
,

where D = D(J, h) > 0 is a universal constant that depends
on J, h.

•

T f (e−N ) = O
(
N3
(
ln
(
2eN

)
+ βδ +

π

2
+N ln 2

))
.
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Application: Derrida’s random energy model (REM)

• Let (Xσ)σ∈ΣN
be a family of i.i.d. standard normal random

variables. At a spin configuration σ ∈ ΣN , the value of the
random Hamiltonian function at σ is

U(σ) = −
√
NXσ.

• It is known that the maximum of Xσ over σ ∈ ΣN , when
normalized by

√
N , converges in probability to

√
2 ln 2,

that is, for any ϵ > 0 we have

lim
N→∞

P
(∣∣∣∣ 1√

N
max
σ∈ΣN

Xσ −
√
2 ln 2

∣∣∣∣ > ϵ

)
= 0.
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Application: Derrida’s random energy model (REM)

Corollary

Suppose we set c = −N
√
2 ln 2 + N1/4

4 ,

δ = −N
√
2 ln 2 + N1/4

4 −minU . Note that w.h.p.

δ = Ω(N1/4 − lnN). For large enough N and low enough
temperature, w.h.p. the following holds:

•
t0mix(e

−N ) = Ω
(
eβ(N

√
2 ln 2−C1

√
N lnN)−(ln 4)NN

)
,
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tfmix(e
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(
ln
(
2eN
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π

2
+N ln 2

))
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Concluding remarks

• This talks centers around a technique that we call
landscape modification.

• This has successfully been applied to spin systems to yield
rapidly mixing algorithms with a novel use of the global
minimum value to adjust the landscape for acceleration,
while the same algorithm on the original landscape mixes
torpidly.

• The transformation is not only limited to this setup. In
fact it is broadly applicable to any gradient-based or
difference-based optimization or sampling algorithm.

• There are also quite a few techniques that share the spirit
of landscape modification that we are aware:

• Olivier Catoni’s energy transformation algorithm, which
can be further traced back to the work of Robert Azencott

• Preconditioning
• Importance sampling
• Quantum annealing
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Catoni’s energy transformation algorithm
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Quantum annealing, MCMC and D-Wave

Image source: Wang et al. Statistical Science ’16
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Ongoing work

• Landscape modification applied to Sequential Monte Carlo
(SMC) (with Kengo Kamatani at ISM Tokyo)

• Finding maximum independent set in graphs

• Other NP-hard problems?
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Thank you! Question(s)?
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